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My background

• PhD in Statistics and Applied Probability (UCSB)

• Postdoc – UCSB Computational Science and Engineering Laboratory

• Five years at U.S. Army Research Laboratory

• Three years (and counting) at Sophos – ML for endpoint security

• Currently:  Lead most “new research” within the Sophos Data Science team
o Multiple projects, from one to five researchers working on any given one

• Most importantly:

I have stepped on almost every rake there is, so you don’t have to.



Data Science @ Sophos

You?
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About this talk
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•What I will talk about:  What/how/why of security data science
o What?  A model? A continuous analysis? A single decision?  

o How?  Best practices, making the process go as smoothly as possible

o Why?  Making sure that what you make is what your organization needs

•What I’m not going to talk about:
o Specific security problems, kinds of models, frameworks, or the latest 

academic research



If you remember nothing else from this 
talk…
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What you think your job as a data scientist is
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Amount of time spent

Fitting models Data Wrangling Getting requirements Sharing results



What it actually is
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Amount of time spent

Fitting models Data Wrangling Talking with people



The single best 
predictor of success 
for a security data 
science project is 

communication and 
collaboration.
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The “Why”



The Data Science process in theory
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Train model or 
do analysis

Validate

Deploy/deliver

Collect (more) 
data



The very first question:

•Why are we doing this?
oHow will this model or 

analysis be used?
oCan we just answer a single 

question and then stop?
oWhat is “good enough”?
oWhat do we actually hope 

to accomplish here?



The Data Science process in theory
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Train model or 
do analysis

Validate

Deploy/deliver

Collect (more) 
data



The Data Science process in theory
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How? With what 
metrics?

Where? Ingesting what 
data? What will be done 

with the output?

From where? 
Labeled how? 

With what features? To what 
level of accuracy?  Under what 

operational constraints?



They may not know what they want
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•You have to be an educator – What are the tradeoffs you 
can offer?  

•What is realistic to expect from the analysis or model in 
that problem space?

•Can you map their goals for the project to something 
concrete and measurable?



Before the “How” part begins…
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YOU should know how your project will fit into the larger 
business process.

THEY should understand what you’re giving them and how to 
interpret or use it.

EVERYONE should agree on what success looks like and how to 
measure it.



The “How”



The “How” of a good project

1. Get good data; clean it, curate it, protect it

2. Have good practices for internal collaboration

3. Construct good features, track them, and evaluate their 
usefulness

4. Be scientific: use common metrics, be able to link results to the 
code that produced them, share results regularly

5. Transition/deploy intelligently: agree on interfaces, know your 
constraints

6. Track and monitor: get feedback from the real world



All about data



“The combination of some data and an aching desire 
for an answer does not ensure that a reasonable 

answer can be extracted.”

– John Tukey

"If you torture the data long enough, it will confess."
– Ronald Coase



Know your data
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“The best material model of a cat is 
another, or preferably the same, cat.” –
Norbert Weiner

• Look at the real world data your project 
will consume as early as possible

Things to consider:

• Label distribution

• Label bias

• Data collection bias



The Security Difference
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• “The enemy gets a vote”

• Labeling can be hard – they’re 
trying to hide

• Data distributions change over 
time as enemies adapt

• It might not be worth using old 
data!



So what should you do?
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• Data sources
o Can you get telemetry from deployment?  
o Are other people working on similar problems? Will they share?
o Can you buy the data outright?
o Is there an existing dataset (e.g. kaggle competition) that could be repurposed?

• Labels – think carefully about these!
o “Vendor aggregation” sites and feeds – voting over detections is a common choice
o Crowdsourcing sites (e.g. Amazon Mechanical Turk, other more specialized services)
o Self-supervised labeling from a ‘seed corpus’

• Train/test splits: mimic deployment
o In most cases, this means a single temporal split:  train on the earliest data, validate 

on the middle chunk, and test on the newest data



Be aware of risk/regulatory issues (GDPR, breach risk, etc.)
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Security data isn’t oil, it’s plutonium: you want the highest quality you can 
get, but it can be dangerous to hang on to and it’s got a half-life.

• Talk with Legal early and often

• Think very carefully about what you actually need to store

• Think very carefully about how long it’s worth storing it

• Know the risks posed by losing control of it or accidentally leaking it

• Consider transforming the data into a less risky form or subset

• Talk with Legal early and often



Finally

24

Once you have a good data set, protect it: 

“raw data” should be read-only



Internal collaboration



Have one way of doing the important things

• Agree on a single set of tools, 
frameworks, etc.

• Avoid “not invented here” syndrome

• Clearly separate utility code from 
experiment- or analysis-specific 
code

• Treat in-house utility code as the 
mission-critical software engineering 
project that it is



Metrics code
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Everyone needs to use the same metrics code: 
NO EXCEPTIONS



Metrics code
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Everyone needs to use the same metrics code: 
NO EXCEPTIONS

NO EXCEPTIONS.



Documentation – the only way to collaborate across time
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• Documentation is a 
continuous process

• Well-documented code 
should always be part of the 
deliverable

• Even for ML models, plan on 
writing an after-action 
review; keep some form of 
“lab notebook”



A non-exhaustive list of questions to answer before you start
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• What is the common data set that is everyone going to use?  How will it be 
split?

• What are the right metrics? Which specific functions will be used?

• What format are you going to store results from the experiment in?  Where 
will those results live?

• Where does documentation live, and what is ‘mandatory’ to store in it?

• Where will the source code live, and how will it be managed?  



The care and feeding of features



“None of the models I’ve tried seem work.”

“I was getting awesome results, but something 
changed in my feature extraction code and I don’t 

know what and now everything’s terrible.”

“It worked great during research but it’s hot garbage 
in production.”
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The tenfive commandments
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• You shall always talk to domain experts 
and heed well their advice
• You shall never run feature extraction 

unless it’s checked in to version control
• You shall always be able to link a set of 

features to the commit that produced 
them
• You shall always be able to link an 

experiment to the commit of any features 
used in that experiment
• You shall have (at a minimum) test vectors 

for feature extraction functions



Domain experts are, well, experts

35

• What do they look at first? 
o Get past the “Just don’t look right” stage

• What tools do they use?  
o Can they be automated for feature extraction?

• How do the bad guys try to hide from them?  
o Does that suggest features?

• How would they break or evade your favorite 
feature?
o Start studying robustness before the bad guys do



The security difference – antiforensics and parsing headaches
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• Anti-reversing and obfuscation techniques are 
commonly used, but may be rare within your 
data
o Can fatally break feature extraction

o Make sure it can recover gracefully

o Keep track of which samples break your feature 
extraction

• What will you do if some or all features can’t 
be extracted?

• Constantly revisit features in light of new 
attacks and evasions



Put the “Science” in “Data Science”



The zeroeth step: use Occam’s Razor
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• Don’t reach immediately for the 
most complicated model or 
technique in your toolbox

• Establish good baselines so you 
know what you gain by adding 
complexity

• Always start with the classics: 
o Linear model
o Naïve Bayes
o Random forest
o Etc.



Key questions
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• Can anyone on this project…
o …directly and meaningfully compare the results of any two runs?

o …immediately reproduce the results of any other person?

• If one set of results looks better, can we easily identify why?

• Six months from now, will someone else be able to figure out…
o …why you pursued one line of research and ignored another?

o …what exact command line you used for your best model or analysis?

Are you sure?



Key questions
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• Can anyone on this project…
o …directly and meaningfully compare the results of any two runs?

o …immediately reproduce the results of any other person?

• If one set of results looks better, can we easily identify why?

• Six months from now, will someone else be able to figure out…
o …why you pursued one line of research and ignored another?

o …what exact command line you used for your best model or analysis?

Are you sure?



Manage your experiments
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• Aim for simple commands like 
`python experiment.py`
o Avoid command-line parameters

• Saving experimental artifacts
o Log files, results, models, plots

• Save experimental parameters
o Not on the command line

• Save or track critical source code
o E.g. git commit shorthash

• Store dependency information 
o E.g. via dumping `conda env`

• Save/require notes
o “I’m doing this run to examine X”



Know when to shift gears
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1. “Tinkering” – does this idea have legs?  Is it worth exploring further? 
What plots or visualizations seem useful and/or interesting?  
o REPL/Jupyter notebook work.  

2. “Testing” – The idea seems valid, can it be scaled? Does it continue to 
work on larger data sets? What variants are worth full scale testing?
o Experimental scripts; basic logging

3. “Rigorous study” – Full scale test, hyperparameter search etc.
o Clean code with separated functionality in a good framework

You cannot do a large data science project with only a 
Jupyter notebook; go ahead and @ me.



Know when to shift gears
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1. “Tinkering” – does this idea have legs?  Is it worth exploring further? 
What plots or visualizations seem useful and/or interesting?  
o REPL/Jupyter notebook work.  

2. “Testing” – The idea seems valid, can it be scaled? Does it continue to 
work on larger data sets? What variants are worth full scale testing?
o Experimental scripts; basic logging

3. “Rigorous study” – Full scale test, hyperparameter search etc.
o Clean code with separated functionality in a good framework

You cannot do a large, collaborative data science project 
with only Jupyter notebooks; go ahead and @ me.



Do your experiments support your conclusions?
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• Change one thing at a time

• Re-run leading candidate experiments or analyses to 
ensure reproducibility/stability

• Criticize your own work: how could Nature and Chance 
have conspired to lead you to the wrong conclusion?



Does your data support your conclusions?
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• Not all metrics are meaningful

• Not all measurements are precise

• You might not have enough data to 
measure what you want to measure



The security difference – noise and drift
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• Your ground truth labels probably aren’t perfect
o Are you over- or under-estimating error rates due to systematic error in 

your ground truth labels?

o Are you reporting statistics below the noise floor?

•Drift (adversarial or otherwise) is always a concern
o Do you know how fast your data distribution changes over time?

o Could old/outdated data be biasing your measurements?

o Are you changing the data distribution by measuring it?



Deploying without YOLOing



You have been talking with the customer regularly, right?
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• You and your customer should both be on the same page: 
o what the model/analysis covers

o where to plug it in, inputs/outputs

o any potential issues or caveats with the model or the results

• If needed, you should be able to explain any modeling or analysis 
decision you made on the basis of existing documentation
o Also – samples you couldn’t analyze, feature issues, etc.



Good.  So here’s what’s left:
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• Give them a mockup to smoke test with.

• Do whatever your pre-agreed conversion 
from “research” to “production” is.

• Use your test vectors:
o Do your production features match your 

research features?

o Do your production feature extractors fail 
gracefully on ‘bad’ input samples?  

o Does your production model give the same 
results on those features as your research 
model?

• Package and begin the handoff.



Easy, right?
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• In practice, this is incredibly hard, especially the first time

•Talk with your customers, be flexible about how you 
deploy

•Get it into a standardized, repeatable with a stable 
interface process as quickly as possible



The Security Difference – bridging the culture gap
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Data Science deals in probability and aggregate statistics, 
not individual artifacts

• Don’t declare defeat because you missed a particular event or instance

• Don’t declare victory because you caught a particular event or instance

• Expect individual errors, have a plan to handle them

• Don’t try to move from population-level statistics to conclusions about 
individual items – it’s a census, not a case study

Again: education and careful communication is important



“So, uh, did it work?” 
Tracking and telemetry



You are getting telemetry, right?
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• Is the model performance on “real” data close to what you 
expected?
o Consider a “silent” deployment at first

•Does the “real data” look like what you expected?

• Is the model adding value? 

• Can you use the model to collect real-world data for later 
refinement/training?
o Beware data storage issues though!  PII? Retention? Breach risk?

o Talk to Legal early and often!



The Security Difference – Adversarial model decay
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• It’ll work great until it doesn’t

• Always be cross-checking model 
performance against new threats, 
attacks, and campaigns

• When something new is identified, 
go back through your data and see 
how long it’s been around and 
what your model did with it



In conclusion



What did we learn from all this?



This:
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1. Deliver a Data Science project that someone wants

2. Find out what they want by talking to them

3. Do good science

4. Make sure they know what you’ve delivered and how to use it

5. Keep an eye on what you delivered and be able to tell when it’s not 
working anymore

Build the systems that enable all of the above.



Questions?




